A boundary element method with surface conductive absorbers for 3-D analysis of nanophotonics
نویسنده
چکیده
Fast surface integral equation (SIE) solvers seem to be ideal approaches for simulating 3-D nanophotonic devices, as these devices generate fields both in an interior channel and in the infinite exterior domain. However, many devices of interest, such as optical couplers, have channels that cannot be terminated without generating reflections. Generating absorbers for these channels is a new problem for SIE methods, as the methods were initially developed for problems with finite surfaces. In this thesis, we show that the obvious approach for eliminating reflections, making the channel mildly conductive outside the domain of interest, is inaccurate. We propose a new method in which the absorber has gradually increasing surface conductivity; such an absorber can be easily incorporated in fast integral equation solvers. We present two types of PMCHW-based formulations to incorporate the surface conductivity into the SIE method. The accuracy of the two-type formulations are examined and discussed using an example of the scattering of a Mie sphere with surface conductivities. Moreover, we implement two different FFT-accelerated algorithms for the periodic non-absorbing region and the non-periodic absorbing region. In addition, we use perturbation theory and Poynting's theorem, respectively, to calculate the field decay rate due to the surface conductivity. We show a saturation phenomenon when the electrical surface conductivity is large. However, we show that the saturation is not a problem for the surface absorber since the absorber typically operates in a small surface conductivity regime. We demonstrate the effectiveness of the surface conductive absorber by truncating a rectangular waveguide channel. Numerical results show that this new method is orders of magnitude more effective than a volume absorber. We also show that the transition reflection decreases in a power law with increasing the absorber length. We further apply the surface conductive absorber to terminate a waveguide with period-a sinusoidally corrugated sidewalls. We show that a surface absorber that can perform well when the periodic waveguide system is excited with a large groupvelocity mode may fail when excited with a smaller group-velocity mode, and give an asymptotic relation between the surface absorber length, transition reflections and group velocity. Numerical results are given to validate the asymptotic prediction. Thesis Supervisor: Jacob K. White Title: Professor of Electrical Engineering and Computer Science Thesis Supervisor: Steven G. Johnson Title: Associate Professor of Mathematics
منابع مشابه
Application of Boundary Element Method to 3 D Submerged Structures With Open Ends (RESEARCH NOTE)
This paper presents a three dimensional application of direct Boundary-Element Method (BEM) for computing interaction of sinusoidal waves with a large submerged open bottom structure near the floor with finite depth. The wave diffraction problem is formulated within the framework of linearized potential theory and solved numerically with direct BEM. A computer program based on BEM is developed ...
متن کاملDevelopment of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature
A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...
متن کاملBOUNDARY ELEMENT METHOD APPLIED TO THE LIFTING BODIES NEAR THE FREE SURFACE
In this study, the boundary element method is formulated to evaluate hydrodynamic characteristics of bodies including free surface effect. The method is based on two equations, the perturbation potential boundary integral and the pressure Kutta condition, which are solved simultaneously. The method uses isoparametric elements for both quantity and geometric on the boundary. The method is first ...
متن کاملEffect of the Multi Vibration Absorbers on the Nonlinear FG Beam Under Periodic Load with Various Boundary Conditions
A semi-analytical method is used to study the effects of the multi vibration absorbers on the nonlinear functionally graded (FG) Euler-Bernoulli beam subjected to periodic load. The material properties of the beam are assumed to be continuously graded in the thickness direction. The governing equations of functionally graded beam are obtained based on the Hamilton's principle and these equation...
متن کاملDUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES
The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...
متن کامل